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We show that the heat exchange between fluid particles and boundary walls can be achieved by controlling
the velocity change rate following the particles’ collision with a wall in discrete kinetic theory, such as the
lattice-gas cellular automata and the lattice Boltzmann method. We derive a relation between the velocity
change rate and temperature so that we can control the velocity change rate according to a given temperature
boundary condition. This relation enables us to deal with the thermal boundary whose temperature varies along
a wall in contrast to the previous works of the lattice-gas cellular automata. In addition, we present simulation
results to compare our method to the existing and give an example in a microchannel with a high temperature
gradient boundary condition by the lattice-gas cellular automata.
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I. INTRODUCTION

In the kinetic theory of gases, the method of discretization
of velocities, in which the particle velocities are represented
by a given finite set of vectors, was used by Broadwell �1,2�,
and later by Gatignol �3�. In these works, although the par-
ticle velocity was discretized, space and time were continu-
ous. In comparison with their works, Hardy and Pomeau �4�
and Hardy et al. �5� proposed a square lattice model, the HPP
model, which discretizes not only the velocity but also space
and time, and studied transport properties of fluids. Frisch et
al. �6� studied a hexagonal lattice, the FHP model, to avoid
the isotropy problem of the square lattice model. The HPP
and FHP models are called lattice-gas cellular automata
�LGCA�, which are arrays of discrete cells with discrete val-
ues �7�.

The LGCA has the disadvantage of statistical noise as
does the Boolean model. However, this problem could be
reduced by using single-particle distribution functions, which
have real values, instead of Boolean values �8�. We call this
method the lattice Boltzmann method �LBM�. The LBM
with the Bhatnagar-Gross-Krook �BGK� collision term �9�,
compared to the LGCA, is noise-free, and has Galilean in-
variance and a velocity independent pressure �10�. As com-
pared with the previous works, which derives the LBM from
the LGCA, there are direct derivations of the LBM from the
continuous Boltzmann equation �11,12�.

For the thermal flows, McNamara and Alder �13� suc-
ceeded in simulating the three dimensional heat-transfer
problem by using multispeed discrete velocities. In general,
there are two major approaches to simulating the thermal

LBM �TLBM�: the multispeed approach �13–15�, which has
problems of numerical instability and limited temperature
variation and, the double-population approach �16�, which is
numerically more stable but still limited in incompressible
flows. Recently, Prasianakis and Karlin �17� proposed a ther-
mal LBM based on a so-called consistent LBM �18� and it
was demonstrated that the speed of sound and shock propa-
gation are described correctly in a wide temperature range.
Nie et al. �19� derived a thermal LBM for gases with inter-
nal degrees of freedom and showed numerical simulations.
However, the simulations were quasi-one-dimensional and
did not consider the energy and momentum exchange be-
tween wall and flow.

In the early work of the boundary condition in discrete
kinetic theory, Gatignol �20� studied gas surface interac-
tion and obtained an H theorem for discrete velocity gases
in a vessel. In the early stage of the LGCA simulations,
the bounce-back scheme was used for a no-slip boundary
condition �6,7�. Later Cornubert et al. �21�, Ziegler �22�,
and Ginzbourg and Adler �23� found that this scheme is
the first order in numerical accuracy at the boundaries. Zie-
gler �22� noticed that the imaginary wall between the first
row nodes of wall and the first row outside, proposed by
Cornubert et al. �21�, have the second order in numerical
accuracy.

There are other boundary schemes proposed to enhance
the numerical accuracy of the LBM �24–26�. Zou et al. �27�
and He et al. �28� studied the boundary conditions using the
analytical solutions of the LBM. He et al. �28� showed that
the schemes proposed by Noble et al. �25� and Inamuro et al.
�26� yielded the correct zero-slip velocity, and the bounce-
back scheme with the wall located halfway between a flow
node and a bounce-back node produced results of second-
order accuracy. Ginzburg and d’Humières �29� proposed an
approach to deal with inclined flat walls or curved walls.
Several authors proposed various boundary conditions based
on a link approach �30–32�. Bouzidi et al. �31�, especially,
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proposed a simple way to deal with boundaries of
arbitrary geometry in the LBM. They combined the intui-
tive notion of bounce-back and interpolations. Ginzburg
and d’Humières �33� extended the approach of Bouzidi
et al. �31� to derive boundary conditions for general
flows, such that the magnitudes of the Knudsen layers
are only third-order corrections to the kinetic problem.
Ansumali and Karlin �34� proposed a discrete version of
the Maxwell boundary condition, which was earlier postu-
lated by Gatignol �20� in the context of discrete velocity
models of the kinetic theory. Guo et al. �35� showed that
the bounce-back and specular-reflection scheme, and the
discrete Maxwell boundary scheme are virtually equivalent,
in principle.

For the thermal boundary conditions, many schemes
are proposed �16,36–41�. However, it is known that ther-
mal boundary conditions for the TLBM suffer from hav-
ing negative valued distribution functions, which is a com-
pletely unphysical characteristic. Therefore, in the present
work, we propose an original boundary condition for the
thermal LGCA, which is robust for a high temperature gra-
dient boundary condition. For this purpose, we derive a re-
lation between a temperature and a velocity change rate on a
boundary wall, based on Maxwell-Boltzmann statistics, so
that we can implant a high gradient temperature boundary
condition by adjusting a velocity change rate. Note that this
boundary condition can be used for the TLBM when we
want to avoid numerical instability caused by the negative
values of the distribution function.

II. BOUNDARY CONDITIONS: GENERAL PRESENTATION

A. Lattice gas cellular automata

We define a set of discrete velocities for a two-
dimensional model, as an example, by

v� i = ��0,0� where i = 0

c�cos�i�/3�,sin�i�/3�� where i = 1,2,3,4,5,6

2c�cos�i�/3�,sin�i�/3�� where i = 7,8,9,10,11,12
� ,

�1�

where c is a constant. During a fixed discrete time �t, par-
ticles with discrete velocities in formula �1� can move around
by hopping from one site to another. We define the dis-
cretized space by the sites, i.e., nodes, where particles can
exist. The collision process is accompanied after each move-
ment. The rule of collision is that if density, momentum, and
energy are the same between two configurations, collision
can occur.

B. Thermal lattice Boltzmann method

If we suppose that there is no external force and utilize
the BGK collision term �9�, the Boltzmann equation is
expressed by

� f�x�,v� ,t�
�t

+ v� · �� f�x�,v� ,t�

= −
1

�rx
�f�x�,v� ,t� − feq�x�,v� ,t�� �2�

where the distribution function f is defined such that
f�x� ,v� , t�dx�dv� is the number of particles in an infinitesimal
element of phase space dx�dv� at time t. The symbol �rx is
a relaxation time that adjusts the attitude to approach
the Maxwell-Boltzmann distribution due to collision. The
Maxwell-Boltzmann distribution feq describes the most prob-
able equilibrium state in a given condition. It has a form in
two-dimensional space,

feq�x�,v� ,t� = feq�v� ,n,u� ,��

=
n

��
exp�−

�v� − u� �2

�
	 �3�

where � is defined by �=2kT /m, k is the Boltzmann constant,
T is a temperature, m is a molecular mass, n is the number
density defined by n=
f�x� ,v� , t�dv� , and u� is the macroscopic
velocity defined by u� = 1

n
v� f�x� ,v� , t�dv� . If we discretize phase
space and time in formula �2�, we obtain the TLBM �i.e.,
Thermal Lattice Boltzmann Method�. Initially, we can obtain
time discretization in second-order accuracy �42�. In addi-
tion, if we define a lattice space and a set of discrete veloci-
ties as formula �1�, the discretization is complete. The main
work of the discretization is that of feq with respect to v� . Let
feq

i being a discretized feq where the subscript i of feq
i cor-

responds to the discrete velocity v� i.
In two-dimensional space, we can discretize feq to obtain

the TLBM �43� by

feq
i�v� i,�� = npi���v� i� + ��v� i,��� , �4�

where ��v�̃ i�=1+2v�̃ i ·u�̃ +2�v�̃ i ·u�̃�2− �u�̃ �2,

��v�̃ i, �̃� = ��̃ − 1��− 1 + �v�̃ i�2� +
��̃ − 1�2

2
�2 – 4�v�̃ i�2 + �v�̃ i�4�

+ 2��̃ − 1��− 2 + �v�̃ i�2��v�̃ i · u�̃� ,

with v�̃ i=v� i /�0, u�̃ =u� /�0, �̃=� /�0, and �0=2kT0 /m, where
T0 is a reference temperature, and with appropriate pi of
formula �4�, which are weight coefficients for discretization
of the continuous Maxwell-Boltzmann distribution �11,43�.
For example, we have

pi = �1/4 where i = 0

1/9 where i = 1,2,3,4,5,6

1/72 where i = 7,8,9,10,11,12
� �5�

for the discrete 13 velocities defined by formula �1� with
c=�0.

C. Derivation of a relation between the velocity
change rate and temperature

We define discrete velocities of a two-dimensional model
in a general form by
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v� i =�
c0�cos�i�0 + �0�,sin�i�0 + �0�� where i = n−1 + 1 to n0

c1�cos�i�1 + �1�,sin�i�1 + �1�� where i = n0 + 1 to n1

ck�cos�i�k + �k�,sin�i�k + �k�� where i = nk−1 + 1 to nk

. . . . . .

cm�cos�i�m + �m�,sin�i�m + �m�� where i = nm−1 + 1 to nm

� , �6�

where 0	c0
c1
c2
 . . . . . . 
cm and n−1=−1. If we
consider a homogeneous lattice space, it is natural that we
have a property of �k which is �nk−nk−1��k=2� where k
=1,2 , . . . ,m. If we define Nk=nk−nk−1 then the previous re-
lation becomes Nk�k=2�.

We define a rate of velocity change P�,� from v�� to v�� as
a result of the heat exchange between a site on a boundary
and molecules which collide with the site. Note that v�� is an
initial velocity and v�� is a reflected velocity. For example, a
site which has P1,2=1 means the velocity change from v�1 to
v�2 occurs 100% for the molecules colliding the site. The rate
Pk,k means the molecules keep their initial velocity. For a
fixed index k of Pk,i, we have �i=0

nm Pk,i=1 to conserve the
number of molecules.

We recall the thermal accommodation coefficient T

=
�−�0

�w−�0
, which is the measure of efficiency for heat exchange

between molecules and a wall, where �0 is the temperature
before an interaction with the wall, � is the reflected tempera-
ture, and �w is the wall temperature. The coefficient T=1
signifies that the reflected temperature is equal to the wall
temperature.

Definition of hypothesis H1. When the particle colliding
with a wall is heated, i.e., the temperature before interaction
with the wall �0 is lower than the boundary wall temperature
�w at a position on a wall, we assume that P�,�=0 when
�v���� �v��� and P�,��0 when �v���
 �v��� for the case of �
��. If �=�, it is possible that P�,��0 because Pk,k indi-
cates the rate of molecules which maintain their initial ve-
locity. Similarly, when the particle colliding with a wall is
cooled, i.e., the flow temperature �0 is higher than the bound-
ary wall temperature �w, we assume that P�,��0 when �v���
� �v��� and P�,�=0 when �v���	 �v��� for the case of ���. A
temperature gradient can be implanted on a wall by adjusting
P�,�.

We define an index set �ck�, utilizing a velocity amplitude
ck in formula �6�, by �ck�= �nk−1+1,nk−1+2, . . . ,nk� where
k=0,1 ,2 , . . . ,m. In other words, �ck� is the set of index num-
bers i of v� i having its amplitude ck, and there are Nk different
indexes. In addition, an element of �ck� is defined by c̄k
� �ck�, i.e., a certain index in the index set of �ck�. We will
use this definition, for example, P�,c̄k

� �P�,i � i� �ck��.
We recall that the number density f i is the number of

molecules, having the discrete velocity v� i, per unit volume.
Generally, we can say

fk��,u�� = �
i=0

nm

Pi,kf i��0,u�� where k = 0,1,2, . . . ,nm. �7�

Formula �7� shows that the number density at temperature �,
can be described by the number density at temperature �0. At

temperature �, the molecules having a discrete velocity v�k are
composed of some of the molecules having a discrete veloc-
ity v�k at �0, i.e., Pk,kfk��0 ,u�� and the molecules initially hav-
ing discrete velocities v� i where i�k at �0 but becoming v�k,
i.e., �i=0,i�k

nm Pi,kf i��0 ,u��.
For simplicity, let us consider the case of heating by col-

lision. Therefore, we consider the case of �w��0. With this
restriction we apply H1, and then we obtain relations

f c̄0
��,u�� = Pc̄0,c̄0

f c̄0
��0,u�� , �8�

f c̄k
��,u�� = �1 − �

i=nk+1

nm

Pc̄k,i	 f c̄k
��0,u�� + �

i=0

nk−1

Pi,c̄k
f i��0,u�� ,

�9�

where k=1,2 , . . . ,m−1 and

f c̄m
��,u�� = f c̄m

��0,u�� + �
i=0

nm−1

Pi,c̄m
f i��0,u�� . �10�

It is emphasized that P�,�=0 when �v���= �v��� in the case of
��� �cf. H1�.

Definition of hypothesis H2. When u� �0;
�1� Pc̄0,�= Pc̄0,� where � ,�� �ck� and k=1,2 , . . . ,m.

�2� Pc̄l,c̄p
= P��c̄l,c̄p� where ��c̄l , c̄p�=cos−1�

v� c̄l
·v� c̄p

�v� c̄l
��v� c̄p

� �.
�3� f��� ,u��= f��� ,u�� where � ,�� �ck� and k

=0,1 ,2 , . . . ,m.
We introduced the isotropy of P�,� in H2. This enables us

to greatly simplify formulas �8�–�10�.
We define P�c̄l , �c̄p��=�i=np−1+1

np Pc̄l,i
and P��c̄l� , c̄p�

=�i=nl−1+1
nl Pi,c̄p

. For example, the meaning of P�c̄l , �c̄p�� is the
sum of the velocity change rate Pc̄l,i

where i=np−1

+1, np−1+2, . . . ,np, i.e., the index i runs for all v� i having an
amplitude cp. Note that P�c̄l , �c̄p��= P��c̄l� , c̄p� when Nl=Np
because Pc̄l,c̄p

does not depend on v� c̄l
and v� c̄p

but depends on

the angle cos−1�
v� c̄l

·v� c̄p

�v� c̄l
��v� c̄p

� � according to �2� of H2. If we assume

Nk=Ns where k ,s=0,1 ,2 , . . . ,m, and use H2 and �i=0
nm Pk,i

=1, we can rewrite formulas �8�–�10� by

f c̄0
��,u�� = �1 − �

p=1

m

P��c̄0�, c̄p�	 f c̄0
��0,u�� , �11�
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f c̄k
��,u�� = �1 − �

p=k+1

m

P��c̄k�, c̄p�	 f c̄k
��0,u��

+ �
l=0

k−1

P��c̄l�, c̄k�f c̄l
��0,u�� , �12�

where k=1,2 , . . . ,m−1 and

f c̄m
��,u�� = f c̄m

��0,u�� + �
l=0

m−1

P��c̄l�, c̄m�f c̄l
��0,u�� . �13�

Note, that for the assumption of Nk=Ns where k ,s
=0,1 ,2 , . . . ,m, we can have multiple identical velocities
with the amplitude of zero, when c0=0, according to the
index system of formula �6�, for the purpose of using
P�c̄l , �c̄p��= P��c̄l� , c̄p�. If we do not use the degeneracy in
zero velocity, we have P�c̄0 , �c̄p��� P��c̄0� , c̄p� because
P��c̄0� , c̄p�= Pc̄0,c̄p

= 1
6 P�c̄0 , �c̄p��. In addition, we assume that

P��c̄0� , c̄p��0 when p�1.
We define Gl,p by the relation P�c̄l , �c̄p��

=Gl,pP�c̄l , �c̄l+1�� where Gl,l+1=1. The physical meaning of
Gl,p is the ratio between the probability sum of the velocity
amplitude change from c̄l to c̄p and that from c̄l to c̄l+1. For-
mulas �11�–�13� can then be written as

f c̄0
��,u�� = �1 − P��c̄0�, c̄1��

p=1

m

G0,p	 f c̄0
��0,u�� , �14�

f c̄k
��,u�� = �1 − P�c̄k,�c̄k+1���

p=1

m−k

Gk,k+p	 f c̄k
��0,u��

+ �
l=0

k−1

P��c̄l�, c̄k�f c̄l
��0,u�� �15�

where k=1,2 , . . . ,m−1 and

f c̄m
��,u�� = f c̄m

��0,u�� + �
l=0

m−1

P��c̄l�, c̄m�f c̄l
��0,u�� . �16�

We introduced Gl,p to reduce the number of P�c̄l , �c̄p�� in
formulas �11�–�13�. We subsequently calculate Gl,p, which is
first introduced in the literature. This enables us to obtain the
thermal boundary condition, which is the relation between
temperature and the velocity change rate.

III. APPLICATION TO THE 19-VELOCITIES MODEL

Let us consider a specific case where the discrete veloci-
ties are given by

v� i = �
�0,0� where i = 0

c��cos��i/3�,sin��i/3�� where i = 1,2,3,4,5,6

3c��cos��i/3 + �/6�,sin��i/3 + �/6�� where i = 7,8,9,10,11,12

2c��cos��i/3�,sin��i/3�� where i = 13,14,15,16,17,18
� . �17�

Then in formula �6�, the constants have values such as
m=3, �0=�1=�2=�3=� /3, �0=�1=�3=0, �2=� /6, c0=0,
c1=c�, c2=3c�, c3=2c�, and N0=N1=N2=N3=6. Note
that we have six identical velocities having the amplitude
of zero, i.e., v�0=v�1=v�2=v�3=v�4=v�5=0 according to the
index system of formula �6�, for the purpose of using
P�c̄l , �c̄p��= P��c̄l� , c̄p�.

Therefore, formulas �14�–�16� become

f c̄0
��,u�� = �1 − P��c̄0�, c̄1��1 + G0,2 + G0,3��f c̄0

��0,u�� ,

�18�

f c̄1
��,u�� = �1 − P�c̄1,�c̄2�� − G1,3P�c̄1,�c̄2���f c̄1

��0,u��

+ P��c̄0�, c̄1�f c̄0
��0,u�� , �19�

f c̄2
��,u�� = �1 − P�c̄2,�c̄3���f c̄2

��0,u�� + G0,2P��c̄0�, c̄1�f c̄0
��0,u��

+ P��c̄1�, c̄2�f c̄1
��0,u�� , �20�

and

f c̄3
��,u�� = f c̄3

��0,u�� + G0,3P��c̄0�, c̄1�f c̄0
��0,u��

+ G1,3P��c̄1�, c̄2�f c̄1
��0,u�� + P��c̄2�, c̄3�f c̄2

��0,u�� .

�21�

If we express P�c̄l , �c̄p�� by the density distributions, we
have, from formula �18�,

P�c̄0,�c̄1�� =
f c̄0

��0,u�� − f c̄0
��,u��

f c̄0
��0,u���1 + G0,2 + G0,3�

�22�

and, from formulas �18� and �19�

P�c̄1,�c̄2�� =
1

f c̄1
��0,u���1 + G0,2 + G0,3��1 + G1,3�

� ��f c̄1
��0,u�� − f c̄1

��,u����1 + G0,2 + G0,3�

+ f c̄0
��0,u�� − f c̄0

��,u��� . �23�

Finally, from formulas �18�–�20�,
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P�c̄2,�c̄3�� =
1

f c̄2
��0,u���1 + G0,2 + G0,3��1 + G1,3�

� ��f c̄0
��0,u�� − f c̄0

��,u����1 + G0,2 + G0,2G1,3�

+ �f c̄1
��0,u�� − f c̄1

��,u����1 + G0,2 + G0,3�

+ �f c̄2
��0,u�� − f c̄2

��,u����1 + G0,2 + G0,3�

��1 + G1,3�� . �24�

We put formulas �22�–�24� into formula �21�, then we obtain

f c̄0
��0,u�� + f c̄1

��0,u�� + f c̄2
��0,u�� + f c̄3

��0,u��

= f c̄0
��,u�� + f c̄1

��,u�� + f c̄2
��,u�� + f c̄3

��,u�� . �25�

Formula �25� has a physical meaning. In fact, we recover the
conservation of mass between the states of temperatures �0
and �.

According to the solution of the two-dimensional hexago-
nal 19-velocities model of the TLBM �43�, with the assump-
tion of u� =0� , we substitute f c̄k

�� ,u�� and f c̄k
��0 ,u�� by

f c̄0
��0,0�� =

n

3
w0,

f c̄0
��,0�� =

nw0

3
�1 − ��̃ − 1� + ��̃ − 1�2� ,

f c̄1
��0,0�� =

nw1

3
,

f c̄1
��,0�� =

nw1

3
�1 + ��̃ − 1��− 1 + r2�

+
��̃ − 1�2

2
�2 − 4r2 + r4�� ,

f c̄2
��0,0�� =

nw2

3
,

f c̄2
��,0�� =

nw2

3
�1 + ��̃ − 1��− 1 + 3r2�

+
��̃ − 1�2

2
�2 − 12r2 + 9r4�� ,

f c̄3
��0,0�� =

nw3

3
,

and

f c̄3
��,0�� =

nw3

3
�1 + ��̃ − 1��− 1 + 4r2�

+
��̃ − 1�2

2
�2 − 16r2 + 16r4�� .

The coefficient wi and r were obtained from the identification
between the discrete and the continuous Boltzmann distribu-
tions by using the second-order Taylor expansion of the con-
tinuous Boltzmann equation and the Laguerre-like quadra-
ture �43�. Their values are given by w0=0.164, w1=0.310,
w2=0.011, w3=0.015, and r=1.115=c� /�0. Note that, be-
cause of the degeneracy of the zero velocity, the discrete
Maxwell-Boltzmann distribution feq

0�� ,u�� has the relation
with f c̄0

�� ,u�� by feq
0�� ,u��=6f c̄0

�� ,u��. Of course, these num-
ber density functions satisfy formula �25�. In addition, for-
mulas �22�–�24� become

P�c̄0,�c̄1�� = −
2 − 3�̃ + �̃2

1 + G0,2 + G0,3
, �26�

P�c̄1,�c̄2�� = −
�− 1 + �̃��2�− 2 + �̃�w0 + �1 + G0,2 + G0,3��r2�6 − 4�̃� + 2�− 2 + �̃� + r4�− 1 + �̃��w1�

2�1 + G0,2 + G0,3��1 + G1,3�w1
, �27�

P�c̄2,�c̄3�� =
1

2�1 + G0,2 + G0,3��1 + G1,3�w2
�− 2�1 + G0,2 + G0,2G1,3��2 − 3�̃ + �̃2�w0 + �1 + G0,2 + G0,3��− �r4�− 1 + �̃�2

+ 2�2 − 3�̃ + �̃2� − 2r2�3 − 5�̃ + 2�̃2��w1 − �1 + G1,3��9r4�− 1 + �̃�2 + 2�2 − 3�̃ + �̃2� − 6r2�3 − 5�̃ + 2�̃2��w2�� .

�28�

From this point, we show the method of the G0,2 estima-
tion. We recall that the physical meaning of Gl,p is the ratio
between the probability sum of the velocity amplitude
change from c̄l to c̄p and that from c̄l to c̄l+1.

We define N�� by the number of particles which change
their velocity amplitude from c� to c� after collision with

a wall and by analogy N�� from c� to c�. When the
heat transferred from the wall to the particles is �E, the
number of possible cases for the combination of N�� and

N�� is W=
�N��+N���!
N��!N��! and the transferred heat is �E=N�����

+N����� where �k= m
2 ck

2, ���=��−��=
m�c�

2−c�
2�

2 , and
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���=��−��=
m�c�

2−c�
2�

2 . We can calculate the most probable
case by virtue of the Lagrange multiplier denoted by �. We
define

L = ln W + ���E − N����� − N������ �29�

then the constraint �L
�N��

= �L
�N��

=0 must be satisfied. We use
the Sterling approximation N ! =NNe−N. We then obtain

�L

�N��

= ln�N�� + N��� − ln N�� − ���� = 0 �30�

and

�L

�N��

= ln�N�� + N��� − ln N�� − ���� = 0. �31�

Note that G0,2=
P��c̄0�,c̄2�
P��c̄0�,c̄1� =

N02

N01
and �2=3�1 for the 19-velocities

model defined by formula �1�. Therefore, when �=0, �=1,
and �=2, formulas �30� and �31� become ln�1+G0,2�=��1

and ln� 1
G0,2

+1�=3��1, respectively. If we eliminate ��1 in the
last two equations, we obtain

1

G0,2
+ 1 = �1 + G0,2�3. �32�

Formula �32� has a positive real valued root G0,2�0.466,
which is the only positive root.

Similarly, when �=1, �=2, and �=3, formulas �30� and
�31� become ln�1+G1,3�=���2−�1�=2��1 and ln� 1

G1,3
+1�

=���3−�1�=3��1, respectively. If we eliminate ��1 in the
last two equations, we obtain

1

G1,3
+ 1 = �1 + G1,3�3/2. �33�

Formula �33� has a positive real valued root G1,3�0.755,
which is the only positive root. In addition we have G0,3

�0.380 from 1
G0,3

+1= �1+G0,3�4, which is obtained the same
way as are the calculations of G0,2 and G1,3. We substitute
G0,2, G0,3, and G1,3 in formulas �26�–�28�, and use the rela-

tion Gl,p=
P�c̄l,�c̄p��

P�c̄l,�c̄l+1�� ; we then obtain

0.2 0.4 0.6 0.8 1.0
Ε�

�1.0

�0.5

0.5

1.0

x�

FIG. 1. The comparison of the temperature profile across the
channel width. The squares indicate the results of Chen et al. �44�,
the dots indicate our results with �T1−T0� /T0=0.33, and the line
represents the analytical result.

0.2 0.4 0.6 0.8 1.0
Ε�

�1.0

�0.5

0.5

1.0

x�

FIG. 2. The comparison of the temperature profile across the
channel width. The squares indicate the results of Chen et al. �44�,
the dots indicate our result with �T1−T0� /T0=0.1, and the line rep-
resents the analytical result.

FIG. 3. The comparison of the temperature profile across the
channel width. On the figure 4.6 of �45�, we added our results by
the dots after normalization of temperature.
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P�c̄0,�c̄1�� = − 0.54�2 − 3�̃ + �̃2� ,

P�c̄0,�c̄2�� = − 0.25�2 − 3�̃ + �̃2� ,

P�c̄0,�c̄3�� = − 0.21�2 − 3�̃ + �̃2� ,

P�c̄1,�c̄2�� = 0.24�− 1 + �̃��− 0.90 + �̃� ,

P�c̄1,�c̄3�� = 0.18�− 1 + �̃��− 0.90 + �̃� ,

P�c̄2,�c̄3�� = 2.60�− 1 + �̃��− 0.33 + �̃� . �34�

We derived the velocity change rate as formula �34� for 19-
velocities model. This is for the case of heating by collision
as mentioned before. For the case of cooling, the derivation
is similar to the case of heating. For example, from formula

�22�, we obtain P�c̄3 , �c̄2��=
f c̄3

��0,u��−f c̄3
��,u��

f c̄3
��0,u���1+G3,1+G3,0� . If we write the

results, they are

P�c̄3,�c̄2�� = − 1.85�− 1 + �̃��0.16 + �̃� ,

P�c̄3,�c̄1�� = − 0.86�− 1 + �̃��0.16 + �̃� ,

P�c̄3,�c̄0�� = − 0.70�− 1 + �̃��0.16 + �̃� ,

P�c̄2,�c̄1�� = − 1.72�− 1 + �̃��0.875 + �̃� ,

P�c̄2,�c̄0�� = − 1.30�− 1 + �̃��0.875 + �̃� ,

P�c̄1,�c̄0�� = 0.61�− 1.665 + �̃��− 1 + �̃� . �35�

Hence, if �̃�1, we use formula �34�, if �̃
1 we use formula
�35�. Note that formula �35� has all positive values when
�̃
1; however formula �34� has not when �̃�1 because of
the negative values when �̃�2. Therefore, this method is
limited to �̃	2. We use the 19-velocities model for the fol-
lowing simulations. Note that we give the velocity change
rate for 13-velocities model in Ref. �43�.

IV. NUMERICAL SIMULATIONS

To apply formula �34� and �35� in the boundary conditions
of our simulations, we calculate �̃ according to the given
boundary temperature and the flow temperature. We then ob-
tain P�c̄l , �c̄p�� at a specific site. Next, for a particle having cl
in this site, we generate a random number between 0 and 1.
If this number is equal or less than P�c̄l , �c̄p��, the velocity
amplitude changes from cl to cp. However, if this number is
more than P�c̄l , �c̄p��, there is no velocity amplitude change.
Note that the discrete velocities having amplitude cp are mul-
tiple. Therefore, the discrete velocity is selected at random.

We compared the results of our method with that of Chen
et al. �44� who did a simulation of the thermal flow with the
LGCA when the thermal boundary temperature was constant
along a wall. Note that our method can deal with the thermal
boundary whose temperature varies along a wall as well as
that whose temperature is constant along a wall. We show
these simulations after this comparison.

We compare their results with ours in Figs. 1 and 2. The
simulations deal with a flow in a channel between two par-
allel plates with different temperatures, which is the same
problem as that of Chen et al. �44�. The inlet and the outlet
of the channel generate identical configurations of nodes;
therefore, the net flow in the longitudinal direction is zero. In
Fig. 1, the given temperatures of the lower and the upper
walls are 2.66 and 2.0, respectively. Therefore, we have a
temperature difference which is �T1−T0� /T0=0.33 where T1
and T0 are the high and the low temperatures of the walls.
Our simulation occupies 64�66 lattice sites and we use a
10�11 site average to obtain a temperature profile after
10 000 iterations of time average while Chen et al. �44� used
512�256 lattice sites and used a large site average. The
Knudsen number of our simulation could be calculated by
Kn� 1

64 cos��/6� �0.018 according to the lattice geometry,
which is four times bigger than Kn� 1

254 cos��/6� �0.004 of

50 100 150 200 250 300
Z

1.5
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3.0

3.5

�
channel region

adiabatic

FIG. 4. The thermal boundary condition implanted on the lon-
gitudinal wall.
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FIG. 5. �Color online� The longitudinal velocity distribution in
the microchannel. In the legend, the amplitude of the longitudinal
component of v�̃ is indicated. The node numbers are indicated on the
left and the lower sides of the figure.
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FIG. 6. �Color online� The transversal velocity distribution in
the microchannel. In the legend, the amplitude of the transversal
component of v�̃ is indicated. The node numbers are indicated on the
left and the lower sides of the figure.

Slow Fast

FIG. 7. �Color online� The velocity field distribution in the
microchannel.
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Chen et al. �44�. Note that the Knudsen number of our simu-
lation Kn�0.018 is calculated by the lattice geometry. How-
ever, if we consider the fact that the collision does not occur
when the configuration of a node has no possible configura-
tion to change, the effective Knudsen number in our simula-
tion could be bigger than Kn�0.018 because the mean free
path in this case is bigger than the distance between two
nodes. The normalization is carried out by ��=

�−�0

�1−�0
and

x�= x
h where �0 and �1 are the lowest and the highest tem-

peratures, respectively, and 2h is the channel width. We used
a conventional PC for the simulation. Therefore, we had dif-
ficulty increasing the lattice sites as 512�256 because of the
PC’s resource power. The analytical result is obtained under
the continuum hypothesis. Therefore, our simulation result
which is not aligned and has temperature jumps near wall
may show the rarefaction effect with the non negligible
Knudsen number.

Sone �45� has studied the heat-transfer between two plane
walls in a linear case where the temperature differences
are small, and has underlined the jumps on the walls and the
non linear profile for the temperature. Note that, in contrast
to Sone’s work, we have, in Fig. 1, a big temperature differ-
ence which is �T1−T0� /T0=0.33. The temperature jump at
x�=−1 is bigger than the jump at x�=1. The temperature
jump is probably more important at the higher temperature
wall.

In order to compare better our simulation results with
those of Sone �45�, we select a small temperature difference
between the two walls. Our simulation deals with a flow
in a channel between two parallel plates with different
temperatures of 2.2 and 2.0 for the lower and the upper
plates, respectively. We obtained a temperature profile for
�T1−T0� /T0=0.1 and Kn� 1

14 cos��/6� �0.082 according to the
lattice geometry. The simulation occupies 64�14 lattice
sites and we obtain a temperature profile after 64�2 lattice
sites average and time average of 1 000 iterations. The effec-

tive Knudsen number in our simulation could be bigger than
Kn�0.082 because the mean free path in this case is bigger
than the distance between two nodes. We present this second
simulation result in Fig. 2, on which the results of Chen et al.
are also indicated.

The comparison between the temperature profile obtained
in the second simulation �Fig. 2� and the figure 4.6 of �45� is
shown in Fig. 3. The temperature profile obtained by our
simulation is not too far from the profile of Kn=0.1 of the
figure 4.6 of �45�.

Henceforth, we show simulation results of the 19-
velocities model of the LGCA using the thermal boundary
conditions of formulas �34� and �35� in a microchannel, with
1 �m width and 10 �m length, connected with two cham-
bers of 2 �m length. Previously, simulation results have
been presented in the same microchannel but for an isother-
mal problem �46,47�. However, we simulate thermal flows
having complicated thermal boundary conditions at this time.
Figure 4, which is only the half image with respect to the
transversal direction, shows the geometry of the calculation
domain which is composed of 341�71 nodes. The Knudsen
number is about 0.08.

We present two simulations according to the given bound-
ary conditions. The initial condition of the calculation sites
is that the particles having v� i where i= �1,4 ,7 ,10,13,16�
are occupied and the remainder of the particles are vacant
for all sites of the calculation domain. The initial wall
boundary condition is same as the thermal boundary condi-
tion used during the calculation, which means we use a
steady state thermal boundary condition. The entrance and
the exit boundary conditions are such that the particles hav-
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FIG. 8. �Color online� The density distribution in the microchan-
nel. In the legend, the value of N is indicated. The node numbers are
indicated on the left and the lower sides of the figure.
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FIG. 9. �Color online� The pressure distribution in the micro-
channel. In the legend, the value of p� is indicated. The node num-
bers are indicated on the left and the lower sides of the figure.
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FIG. 10. �Color online� The temperature distribution in the mi-
crochannel. In the legend, the value of � is indicated. The node
numbers are indicated on the left and the lower sides of the figure.

50 100 150 200 250 300
Z

1.8

2.0

2.2

2.4

2.6

2.8

�

channel region

FIG. 11. The value of � near the central longitudinal axis in the
microchannel.
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ing v� i, where i= �3,6 ,9 ,12,13,15,16,18�, are generated and
the rest of the particles are not for all time t.

The first thermal boundary condition implanted on the
longitudinal wall is described in Fig. 4. The left half of
the channel region has a high gradient temperature boundary
condition and the right half has an adiabatic boundary
condition. Note that the flow with the same values of pres-
sure, density, and velocity is generated at the left and right
extremities of the left and right chambers �cf. Fig. 5�, respec-
tively. We used the thermal accommodation coefficient
T=1. We verified the convergence of the simulated flows by
comparing the values with respect to the numbers of itera-
tions.

The longitudinal and the transversal velocity �amplitudes
of the longitudinal and transversal components of v�̃ , respec-
tively� distributions in the microchannel are shown in Figs. 5
and 6. Their values are very small. �Note that �v�̃ �=1 signify
�v� �=�0.� The velocity field distribution is shown in Fig. 7.
We observed a vortex in the exit chamber.

Figures 8–10 show the density, pressure, and temperature
distributions, respectively. The value of the density is ob-
tained by N=�k=0

18 Nk where Nk=0 if v�k is not occupied and
Nk=1 if v�k is occupied. The value of the pressure is obtained
by p*=�k=0

18 Nk�
v�k−u�

c1
�2 where u� =�k=0

18 Nkv�k

N . We can obtain the
value of the temperature by �= p� /N. The distribution of �
is that of a scaled temperature because, from the ideal gas
kinetic theory, we have p=nkT where p is a pressure, n is a
number density, k is the Boltzmann constant, and T is a tem-
perature. Hence, in three-dimensional space we have a rela-
tion �= m�

2� where m is a molecular mass, � is a volume
containing the number of molecules N, and �= 2kT

m . The den-
sity and the temperature distributions show inhomogeneity,
while the pressure distribution shows homogeneity in the
domain of the calculation.

The values of � with respect to the longitudinal number
of nodes Z near the central longitudinal axis in the micro-

channel are shown in Fig. 11. The results show that the maxi-
mum temperature of the flow is located around Z=100 al-
though the given temperature boundary condition has a
maximum temperature around Z=50. In addition, the flow is
heated in the entire microchannel and even chambers. The
calculation time is less than one day by a conventional PC.

The second thermal boundary condition implanted on the
longitudinal wall is described in Fig. 12. The central part of
the channel region has a high gradient temperature boundary
condition and its left and right sides have the adiabatic
boundary conditions. Note that the flow with the same values
of pressure, density, and velocity with ��2 is generated at
the left and right extremities of the left and right chambers
�c.f. Fig. 13�, respectively. We use the thermal accommoda-
tion coefficient T=1 as before. We obtained the velocity and
pressure distributions; however, they were similar to those of
the first simulation. Therefore, we omitted them. Figure 13
corresponds to Figs. 8, and Figs. 14 and 15 correspond to
Figs. 10 and 11, with respect to their given boundary condi-
tions. The results show that the maximum temperature of the
flow is located around Z=170 where the given temperature
boundary condition has the maximum value. In addition, the
flow is heated in the entire microchannel and even chambers.

V. CONCLUSION

The LBM is a promising scheme for simulating isother-
mal flows in applications involving interfacial dynamics and
complex boundaries. For thermal flows, the TLBM was de-
veloped, and showed successful simulation results in certain
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FIG. 12. The thermal boundary condition implanted on the lon-
gitudinal wall.
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FIG. 13. �Color online� The density distribution in the micro-
channel. In the legend, the value of N is indicated. The node num-
bers are indicated on the left and the lower sides of the figure.
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FIG. 14. �Color online� The temperature distribution in the mi-
crochannel. In the legend, the value of � is indicated. The node
numbers are indicated on the left and the lower sides of the figure.
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FIG. 15. The value of � near the central longitudinal axis in the
microchannel.
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conditions. However, it is still suffering from the negativity
of the discrete distribution functions on the boundary after
collision. For thermal flows, we can also use the multispeed
LGCA with an original robust thermal boundary condition,
which is first suggested in this paper, by introducing Gl,p
and using Maxwell-Boltzmann statistics. We derived a rela-
tion between a temperature and a velocity change rate.
Therefore, it was possible to make the effect of heat ex-
change on a wall, along which we could vary temperature,
by adjusting the rate of velocity change. This is a remarkable
achievement because, to the best of our knowledge, previous
works could only deal with walls having constant tempera-
tures along them in LGCA. We applied our method to the

two-dimensional hexagonal 19-velocities model and derived
formulas �34� and �35�, and with these results we presented
simple thermal flows to compare our method with others and
show microchannel flow simulations with high temperature
gradient boundary conditions for the LGCA.
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